3 research outputs found

    Effect of Pre-Bending and Hydroforming Parameters on the Formability of Advanced High Strength Steel Tube

    Get PDF
    With increasing fuel costs and the current drive to reduce greenhouse gas emissions and fuel consumption, a need to reduce vehicle weight is apparent. Weight reduction can be achieved by replacing conventionally stamped structural members with hydroformed parts. The weight reduction can be further enhanced by reducing the thickness of the hydroformed members through the use of advanced high strength steel (AHSS). A primary limitation in hydroforming AHSS, is the limited ductility or formability of these materials. This limitation becomes acute in multi-stage forming operations in which strain path changes become large making it difficult to predict formability. Thus, the focus of the current work is to study the effects of pre-bending on the subsequent hydroformability of Dual-Phase DP600 steel tubes. As part of this effort, the effect of key bending and hydroforming process parameters, bending boost and hydroforming end-feed, have been studied in a parametric fashion. Multi-step pre-bending and hydroforming experiments were performed on 76. 2 mm (3. 0") OD tubes with a wall-thickness of 1. 85mm (DP600). Experiments were also performed on 1. 74mm Interstitial Free (IF) steel tube, which provided a low strength, high formability baseline material for comparison purposes. A fully instrumented servo-hydraulic mandrel-rotary draw tube bender was used in the pre-bending experiments in which various levels of boost were applied. The results showed that increased boost reduced the major (tensile) strain and thinning at the outside of the bend. At the inside of the bend, the compressive minor strain became larger and thickening increased. Hydroforming of the straight and pre-bent tubes was conducted using various levels of load-control end-feed (EF). For both straight and pre-bend tube hydroforming, an increase in hydroforming EF resulted in increased burst pressure and corner-fill expansion (CFE). The effect of bending boost on CFE was also measured. For a given hydroforming EF case, a tube bent with greater boost achieved a higher burst pressure and consequently a greater CFE which increased the hydroformability of the material. Pre-bending was shown to consume a considerable amount of the formability of the tube in the hydroforming experiments. For the same EF case, the pre-bent tubes could only achieve a fraction of the straight tube CFE at burst. The pre-bending and hydroforming experiments were complimented by finite element simulation in the hope of providing additional insight into these processes. The finite element (FE) models were able to accurately predict the strain and thickness changes imposed during pre-bending. The models were able to accurately predict the CFE, EF displacement, and strain and thickness distributions after hydroforming. The extended stress-based forming limit curve (XSFLC) failure criterion was applied to predict failure (onset of necking) during hydroforming, which was measured as the burst pressure in the experiments. For straight tube hydroforming, the XSFLC predicted the correct failure pressure versus hydroforming EF load trend, but over predicted the failure pressures. In pre-bend hydroforming, the models were able to capture the effect of bending boost and hydroforming EF on the hydroformability of the tubes. The XSFLC was able to capture the drop in formability for bending versus straight tube hydroforming, but was unable to capture the failure pressure versus hydroforming EF load trend or magnitude. Further work is required to make the XSFLC applicable to straight and pre-bend hydroforming

    High Strain Rate Behaviour of Hot Formed Boron Steel with Tailored Properties

    Get PDF
    In an automotive crash event, hot stamped, die quenched martensitic structural components have been shown to provide excellent intrusion resistance. These alloys exhibit only limited ductility, however, which may limit the overall impact performance of the component. The introduction of lower strength and more ductile “tailored” properties within some regions of a hot stamped component has the potential to improve impact performance. One approach being applied to achieving such tailored properties is through locally controlling the cooling rate within the stamping die. The primary motivation for the current work is to understand the role of cooling rate on the as-quenched mechanical response of tailored hot stampings, which has required characterization of the high strain rate mechanical behaviour of tailored hot stamped boron steel. The effect of cooling rate and resulting microstructure on the as-quenched mechanical behavior of USIBOR® 1500P boron steel at strain rates between 10-3 and 103 s-1 was investigated. Specimens quenched at rates above the critical cooling rate (~27 °C/s) exhibited a fully martensitic microstructure with a UTS of ~1,450 MPa. Sub-critical cooling rates, in the range 14°C/s to 50 °C/s, resulted in as-quenched microstructures ranging between bainitic to martensitic, respectively. Tension tests revealed that predominantly bainitic material conditions (14 °C/s cooling rate) exhibited a lower UTS of 816 MPa compared to 1,447 MPa for the fully martensitic material condition (50 °C/s cooling rate) with a corresponding increase in elongation from 0.10 to 0.15 for the bainitic condition. The reduction in area was 70% for the bainitic material condition and 58% for the martensitic material conditions which implied that a tailored region consisting of bainite may be a desirable candidate for implementation within a hot stamped component. The strain rate sensitivity was shown to be moderate for all of the as-quenched material conditions and the measured flow stress curves were used to develop a strain rate sensitive constitutive model, the “Tailored Crash Model (TCM)”. The TCM accurately reproduced the measured flow stress curves as a function of effective plastic strain, strain rate and Vickers hardness (or area fraction of martensite and bainite). The effect of deformation during quenching and the associated shift in the CCT diagram on the subsequent constitutive response was also examined for this material. Specimens were simultaneously quenched and deformed at various cooling rates to achieve a range of as-quenched microstructures that included ferrite in addition to martensite and bainite. Tensile tests conducted on these specimens at strain rates ranging from 0.003 s-1 to ~80 s-1 revealed that the presence of ferrite resulted in an increase in uniform elongation and n-value which increased overall energy absorption for a given hardness level. The strain rate sensitivity was shown to be moderate for all of the as-quenched material conditions and the TCM constitutive model was extended to account for the presence of ferrite. This extended constitutive model, the “Tailored Crash Model II (TCM II)”, has been shown to predict flow stress as a function of effective plastic strain, strain rate and area fraction of martensite, bainite and ferrite. As a validation exercise, uniaxial tension test simulations of specimens extracted from the transition zone of a hot stamped lab-scale B-pillar with tailored properties [1] were performed. The measured hardness distribution along the gauge length of the tensile specimens was used as input for the TCM constitutive model to define the element constitutive response used in the finite element (FE) models. The measured stress versus strain response and strain distribution during loading (measured using digital image correlation) was in excellent agreement with the FE models and thus validated the TCM constitutive model developed in this work. Validation of the TCM II version of the model is left for future work

    The Energy Absorption Behavior of 3D-Printed Polymeric Octet-Truss Lattice Structures of Varying Strut Length and Radius

    No full text
    We investigate the compressive energy absorption performance of polymeric octet-truss lattice structures that are 3D printed using high-resolution stereolithography. These structures are potential candidates for personal protective equipment, structural, and automotive applications. Two polymeric resins (high-strength/low-ductility and moderate-strength/high-ductility) were used in this work, and a comprehensive uniaxial tensile characterization was conducted to establish an optimal UV curing time. The external octet-truss structure geometry (3″ × 3″ × 3″) was maintained, and four different lattice cell densities (strut length, L) and three different strut radii (R) were printed, UV cured, and compression tested. The compressive stress–strain and energy absorption (EA) behavior were quantified, and the EA at 0.5 strain for the least dense and smallest R structure was 0.02 MJ/m3, while the highest density structure with the largest R was 1.80 MJ/m3 for Resin 2. The structural failure modes varied drastically based on resin type, and it was shown that EA and deformation behavior were related to L, R, and the structures’ relative density (ρ¯). For the ductile resin, an empirical model was developed to predict the EA vs. compressive strain curves based on L and R. This model can be used to design an octet-truss lattice structure based on the EA requirements of an application
    corecore